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Soliton stability in a bimodal optical fiber in the presence of the Raman effect
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Using the quasi-instantaneous approximation for the Raman interactions in the bimodal bire-
fringent optical fiber, and a simple equal-width approximation for a two-component soliton, it is
demonstrated that, in virtue of the known constraint imposed by the isotropy of nonlinearity and
reality of polarizability, single-component solitons are stable, while symmetric vector solitons are

not.
PACS number(s): 42.81.Dp, 42.81.Gs

The important impact of interaction between differ-
ent polarizations on propagation of light in nonlinear
optical fibers is well known (see, e.g., Ref. [1]). It is
also well known that stimulated Raman scattering may
essentially affect dynamics of ultrashort solitons in the
fibers [2]. Recently, it was considered in detail how these
two effects combine, i.e., the Raman downshift involving
two polarized components of light in a bimodal nonlin-
ear fiber [3,4]. In the quasi-instantaneous approximation,
i.e., when the finite delay of the Raman response is ne-
glected, the coupled nonlinear Schrédinger (NLS) equa-
tions incorporating the Raman terms take the form [3]

iu, + i0u, + 2urr + ([ul? + 2{v|?)u

=e (Ju?), v+ e (v?), u+es(w*), v, (1)

W, — i6v, + 2vr, + (Jv]? + Zv]?)v

= (v)?), v+e (Ju?)_v+es(vu), u, (2)

where u and v are envelopes of two linearly polarized
components of the electromagnetic wave, z is the propa-
gation distance, t is time, and 7 =t — z/Vg,, Vj; being
the mean group velocity of the light in the fiber. The co-
efficient 6 measures the birefringence-induced group ve-
locity difference between the polarizations, €; is the co-
efficient of the parallel Raman effect, and ¢; and €3 are
the so-called perpendicular Raman coeflicients (only €3
contributes to the perpendicular Raman gain). These
coefficients obey a fundamental relation following from
the isotropy of nonlinearity and reality of polarizability
of the optical medium [3]:

€1 = €2 + 263 . (3)

The quasi-instantaneous form of the Raman terms in Egs.
(1) and (2) is but a simplest approximation, while a more
accurate model should include the full time-delayed Ra-
man response [3,4]. Accordingly, Eq. (3) is a special case
of a general relation derived in Ref. [3] for coefficient
functions describing the time-delayed response.

One can exclude the birefringence terms from
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Egs. (1) and (2) by means of the transformation
u(z,7) = U(z,7)exp (—iJ'r + %i&zz), v(z,T) =
V(z,7)exp (+i67 + 1i6%z), which simultaneously pro-
duces an additional Raman term in equations for the new
varibles U and V:

WU, + 32U + (U + 2|V U

= a (UP),U+e(VP),U
+e3 (UV*), V — 2ides|V|?U (4)

iV, + Ve + (VI + 2IUP)V

=a (V). V+e(UP),V
+e3(VU*), U + 2ide3|U|V . (5)

Equations (1) and (2) [or, equivalently, Egs. (4) and (5)]
admit two distinct types of soliton solutions: the simple
solitons, in which only one component is different from
zero, and vector solitons, in which |u| = |v|. Stability of
the solitons in birefringent optical fibers is of obvious in-
terest [5]. The objective of this short paper is to present
simple analytical results for the stability of the solitons
obtained within the framework of the model based on
Eqs. (4) and (5). More approximations will be used be-
low (equal temporal widths of the two components of the
vector soliton, and no chirp). However, the main result
which will be obtained in this work has a very simple and,
simultaneously, general form, which suggests that it may
be true beyond the framework of the approximations em-
ployed. Namely, it will be demonstrated that the simple
solitons are stable provided that the parallel Raman co-
efficient ¢, is larger than the net perpendicular coefficient
€2 + €3, while the vector soliton is stable exactly in the
opposite case. In virtue of the relation (3), this means
that the simple solitons may be stable, while the vector
soliton is always unstable. This prediction calls for nu-
merical verification. Numerical simulations of the vector
soliton governed by the coupled NLS equations including
the full Raman terms were reported in Ref. [4]; however,
the system considered in [4] was essentially more compli-
cated, as it included also the linear coupling accounting
for the fiber’s twist. Anyway, a general qualitative con-
clusion of Ref. [4] was that the Raman effect conspicu-
ously suppressed the effective coupling between the two
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polarizations. It seems that the instability of the vector
soliton vs the stability of the simple one, predicted in
this work, complies with that general conclusion. Ana-
lytical consideration of dynamics of the solitons in the
presence of the twist-induced linear coupling, acting in
combination with the Raman terms, is a more general
and challenging problem, which is now under way [6].

In this work, the following simplest ansatz for the soli-
ton’s wave form will be adopted:

U = ncosf@sech[n(r — T)] exp [i(—w17T + ¢1)] , (6)
V = psin@sech[n(r — T)] exp [i(—waT + ¢2)] , (7)
where 7! is the inverse temporal width of the soliton,

which is preassumed to be the same for both components;
0 is the polarization angle; w,  are the central frequencies
of the two components, which, generally, may be differ-
ent; T is the temporal position of the soliton’s center,
which is a function of 2, but, as well as 7, is preassumed
to be the same for both components (it is implied that
the Raman terms will be regarded as a weak perturba-
tion, while the centers of the two components are kept
together by the strong nonlinear cross-phase modulation
terms); and ¢, 2 are 2-dependent phases of the two com-
ponents.

In the absence of the Raman interactions, the energies
of both polarizations

+oo
Wis = / U, V|2dr (8)

are conserved, as well as the net momentum P = P; + P,

where

+o0 +oo
UUdr, P; =1

—oo —o0

P =i VVidr.  (9)

Moreover, if one assumes that |U(7)|? and |V (7)|? are
even functions of 7, which is the case in Egs. (6) and (7),
it is easy to check that both components of the momen-
tum, P; and P,, are conserved separately in the absence
of the Raman terms.

When the Raman interactions are absent, the conser-
vation laws stipulate that all the essential parameters in
the ansatz (6) and (7) are constant: it is straightforward
to see that 7 and 6 cannot change, respectively, due to
the conservation of W; + W, and W; — W, while w;
and w, are conserved if the two momenta P; and P are
conserved separately. This implies that the coupled NLS
equations (4) and (5) should have, at € = 0, exact station-
ary solutions corresponding to an arbitrary polarization
0 (i.e., not only to the obvious values § = 0, § = «/4,
and 6 = 7/2). This has been recently demonstrated, in
the framework of a more sophisticated analytical approx-
imation, in Ref. [7]; independently, the same result was
obtained numerically in Ref. [8].

Inclusion of the Raman terms should give rise to a non-
trivial inner dynamics of the soliton represented by the
ansatz (6) and (7). A natural assumption is that, if all
the Raman terms may be treated as weak perturbations,
the ansatz should retain its form, but the parameters 0
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and wj,2 will be subject to a slow evolution in z; it is
obvious that the inverse width n will suffer no evolution
as the net energy remains an exact integral of motion
in the presence of the Raman terms. The simplest way
to derive the corresponding evolution equations for the
parameters of the ansatz is to employ the so-called bal-
ance equations for the former conserved quantities. For
instance, for W; — W, one can immediately obtain from
Egs. (4) and (5)

d +o0 . 2
= [T e-wpyer
+o0
= 2 / (UV*), VU*dr
+oo
126 / UPVRdr| + cc. (10)

Next, inserting the anstaz (6) and (7) into the left- and
right-hand sides of Eq. (10), one arrives at the evolution
equation for the polarization angle:

dé
dz
Quite similarly, one can derive the evolution equations

for the frequencies wq > from the balance equations for
the momenta P :

= Llegn? [(w — wz) + 26] sin(26) . (11)

% = -—%n‘l [ex cos? 0 + (ez + €3) sin? 9] ) (12)
% = —8n* [e1sin? 0 + (€2 + €3) cos? 6] . (13)

Thus, there are three evolution equations (11), (12),
and (13) for the three dynamical parameters 6, w;, and
wz. The simple solitons are represented by two obvious
quasistationary solutions of these equations:

dw dwy
6 =0 -d_zl = '%77461; 4z = —%714(624—63)1 (14)
T dw dw
0= g = W g = TwT@te).

(15)

The values of the derivatives dw;/dz and dw;/dz in these
solutions exactly correspond to the well-known expres-
sion for the rate of the Raman-induced downshift of the
soliton’s frequency in the model based on the single NLS
equation [2]. The frequencies wp and wy, respectively,
are formal ingredients of the solutions (14) and (15),
as, according to Egs. (6) and (7), the corresponding po-
larization components are equal to zero in the solutions
[these formal terms can be obtained naturally if one con-
siders the simple solitons as a limiting case of general
dynamical solutions of Egs. (11)—(13), corresponding to
sin(26) — 0]. However, the representation of the simple-
soliton solutions in the form of Eqs. (14) and (15) is
convenient for the subsequent stability analysis.
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The vector soliton is given by another quasistationary
solution to Egs. (11)—(13):

n dw dw
0= 3 g = g = —diatate)
wy —wy = —26. (16)

The constant frequency difference —24 in this solution
exactly compensates for the frequency separation intro-
duced when transforming Eqgs. (1) and (2) into Egs. (4)
and (5).

To analyze the stability of the solitons, one should lin-
earize the underlying equations (11)—(13) on the back-
ground of the corresponding quasistationary solutions.
In the case of the simple solitons, linearization of Egs.
(12) and (13) produces trivial equations, while Eq. (11)
leads to the following linearized equation for the small
perturbation (1) of the polarization angle:

do(m)
dz

where the signs + and — correspond, respectively, to the
solutions (14) and (15). Inserting into Eqs. (17) the ex-
pression for w; — wy following from Egs. (14) and (15),
one immediately concludes that the simple soliton is sta-
ble (i.e., the perturbation #(1) does not grow), provided
that

= +2n? [wi(2) — w2 (2) + 28] 6V, (17)

€1 > €2 + €3, (18)

and unstable in the opposite case. Taking into account
the relation (3), one immediately concludes that the sim-
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ple solitons are stable.

To consider the stability of the vector soliton (16), one
should combine the linearized version of Eq. (11) for the
polarization angle and the linearized equation for w; —w,
which can be obtained by subtraction of Eq. (12) from
Eq. (13). Assuming that the infinitesimal perturbations
of 6 and w; — w, are proportional to exp(oz), a straight-
forward algebra leads to the following expression for the
gain o:

o? = %637’]6 [e1 — (€2 + €3)] - (19)
The condition for stability of the vector soliton following
from Eq. (19) (02 < 0) is exactly opposite to Eq. (18):
€1 < €3 + €3, i.e., the vector soliton would be stable if
the perpendicular Raman effect were stronger than the
parallel one. However, the relation (3) makes this impos-
sible.

Thus, the fundamental restriction (3) imposed by
the general physical properties of the nonlinear optical
medium (3] leads to the conclusion that the simple soli-
tons may be stable, while the vector solitons may not.
Note that otherwise (i.e., if the Raman terms are not
included) the vector solitons can be good stable solu-
tions of the coupled NLS equations (see, e.g., Ref. [7]).
Although this conclusion is based on the simplest quasi-
instantaneous approximation for the Raman terms, as
well as on the oversimplified soliton ansatz (6) and (7),
it seems plausible that it will remain true in the realistic
model with the delayed Raman response and with more
freedom given to the solitons.

I am indebted to Yuri Kivshar for valuable discussions.
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